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Basics
fig. 1
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O: Projection center

d(O, π) = d(O, π) = f,

f: Projection distance,

also focal length

The image is formed on the plane π but for the formulation of the geometric
relations we may suppose that it is formed on the plane π. Some relations as well as
the images themselves become clearer when drawn that way.
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fig. 3
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O: Projection center

f: Focal length

p: Principal point

(xc, yc): Image system

(x, y): Principal point system

Therefore, (xc
p, y

c
p) are the coordinates of p, that is, of the origin of the (x, y) system,

in the (xc, yc) system. The (x, y) system is by definition that which is parallel to the
(xc, yc) system and centered at p.
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fig. 4
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f: Focal length

H: Flight height above ground

a, b: Image points of A and B

ab =
f

H
AB. Therefore,

f

H
is the scale of the image.

fig. 5
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p: Principal point

a, b: Image points of A and B

AB = ∆Z

pa = ra, pb = rb, ab = ∆r

The image of B is the same as that of C and so ab =
f

H
AC. But

AC

BA
=

rb

f
=⇒ AC = ∆Z

rb

f
≈ ∆Z

ra

f

The last approximation being made because we are supposing ∆Z to be small with
respect to H. Hence,

∆r =
f

H
∆Z

r

f
=

r

H
∆Z

which means
∆x =

x

H
∆Z ∆y =

y

H
∆Z
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fig. 6

O1 O2B

a1 a2
x1 x2

f f
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B C A

−−−→
O1O2: Direction of x axis in the photographs

B = O1O2: Base

a1, a2: Image points of A

(x1, y1), (x2, y2): Photo coord. of a1 and a2

p = x1 − x2: Parallax

With the x, y axes so chosen, y1 = y2 and

p = x1 − x2 =
f

H
BA − f

H
CA =

f

H
(BA − CA) =

f

H
B = f

B

H

For a small movement in Z of the point A,

∆p ≈ dp

dZ
∆Z = − fB

H2
∆Z = −B

H

f

H
∆Z

Collecting all the formulas relative to small displacements,

Because of ∆X, ∆Y: ∆x1 = ∆x2 =
f

H
∆X ∆y1 = ∆y2 =

f

H
∆Y

Because of ∆Z: ∆x1 =
x1

H
∆Z ∆x2 =

x2

H
∆Z

∆y1 = ∆y2 =
y

H
∆Z

∆p = ∆(x1 − x2) = ∆x1 − ∆x2 = −B

H

f

H
∆Z

If the photographs have a covering of 60% it means that the same elements appear
in one photograph with a displacement of approximately 0.4l with respect to the other,
where l is the length of the x-side of the photograph. If the focal length equals the
half-diagonal of the photo, as in the standard analogical flights,

p = x1 − x2 ≈ 0.4l ≈ 0.4
√

2f ≈ 0.56f

and p/f = B/H (this is most easily seen if the point A is just below O2), so

B

H
≈ 0.56
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This means that a displacement in Z has a visible effect on the photo coordinates
just 0.56 of that of a displacement in X or in Y.

Theory of one photograph (without distortion)

fig. 7
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XYZ: Object coordinate system

p: Image principal point

f: Focal length

xyz: Principal system

xcyc: Image system

A: object point

a: Image points of A

Let (XO, YO, ZO) be the coordinates of the projection center in the object system.
The coordinates of A in a system parallel to that of the object and centered at O are

(XA − XO, YA − YO, ZA − ZO)

This system can be rotated and thus carried to the x, y, z system. The coordinates
of A in this system are therefore





xA

yA

zA



 = M





XA − XO

YA − YO

ZA − ZO





i.e.,

xA = m11(XA − XO) + m12(YA − YO) + m13(ZA − ZO)

yA = m21(XA − XO) + m22(YA − YO) + m23(ZA − ZO)

zA = m31(XA − XO) + m32(YA − YO) + m33(ZA − ZO)

We will use bold letters to represent vectors: X = (X, Y, Z). When operated with
matrices they will always be column vectors. With this notation the previous matrix
equation can be written as

xA = M(XA − XO)
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The points A and a are in line with the projection center O. Therefore, their
coordinates in any system centered at this point will be proportional. This is known
as colinearity condition. In particular, in the x, y, z system

xa

xA

=
ya

yA

=
za

zA

We know za = −f, whence

xa = −f
xA

zA

ya = −f
yA

zA

za = −f (1)

Substituting xA, yA and zA by their expression in terms of XA, XO, etc., we find

xa = −f
m11(XA − XO) + m12(YA − YO) + m13(ZA − ZO)

m31(XA − XO) + m32(YA − YO) + m33(ZA − ZO)

ya = −f
m11(XA − XO) + m12(YA − YO) + m13(ZA − ZO)

m31(XA − XO) + m32(YA − YO) + m33(ZA − ZO)
(2)

za = −f

In these equations we see that the parameters defining the coordinates in the prin-
cipal system of the image point a of an object point A are:

(XA, YA, ZA): The coordinates of A in the object system

(XO, YO, ZO): The coordinates of the projection center in the object system

(Ω, Φ, K): Three parameters defining a rotation matrix

f: The projection distance

Here the letters Ω, Φ, K simply symbolize three parameters defining a rotation matrix;
they needn’t be three consecutive rotations around the X, Y and Z axes respectively.
They even needn’t be rotations at all.

In order to get coordinates in the image system two more parameters are needed:

(xc
p, y

c
p): Coordinates of the principal point in the image system

These parameters define the position of the center of the image system with respect
to the principal point (not the other way round). The coordinates of a in the image
system are

xc
a = xa + xc

p yc
a = ya + yc

p
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fig. 8
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Figure 8 displays two photographs with a common projection center. If the pa-
rameters Ω, Φ, K, f,xc, yc of both of them are known then, knowing the coordinates of
an image point a in one of the photos, the coordinates of the image point in the other
photo, a, may be computed. The relevant fact is that the coordinates (XA, YA, ZA)
of the object point need not be known. The reason is that, provided the projection
center O is kept fixed, the projective rays do not change.

This fact allows the analytical computation of a faked image, the projection center
of which is the same as that of the image we have and where the other parameters are
chosen freely by us. The coordinates used for this transformation are the ones in the
principal system. With respect to these coordinates (where there is no xc, yc), the two
images differ in the rotation matrix M and in the focal length f:

Image Parameters Coordinate system Image point

π M, f x, y, z a

π′ M, f x, y, z a

The coordinates of a in the system x, y, z are computed by means of the colinearity
equations, projecting the point a as if it were the object point. That is, we take image π
as the object and the x, y, z coordinate system as the object system, and project a into
the image π′.

Proceeding exactly as in the derivation of the colinearity equations, we rotate the
object system in order to carry it to the image system; that is, we rotate x, y, z to the
position x, y, z, and find the coordinates of the object point, a, in the later system:





xa

ya

za



 = N





xa

ya

za





We recall that za = −f. So

xa = n11xa + n12ya − n13f

ya = n21xa + n22ya − n23f

za = n31xa + n32ya − n33f
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We apply the colinearity condition:

xa

xa

=
ya

ya

=
za

za

, za = −f

and finally

xa = −f
n11xa + n12ya − n13f

n31xa + n32ya − n33f

ya = −f
n21xa + n22ya − n23f

n31xa + n32ya − n33f

za = −f

Removing the subindices:

x = −f
n11x + n12y − n13f

n31x + n32y − n33f

y = −f
n21x + n22y − n23f

n31x + n32y − n33f

z = −f

There remains to find the rotation matrix N. It is the one that carries x, y, z to
x, y, z. This result may be achieved by first removing the rotation M, thus orientating
x, y, z as the original object system, and therefrom applying M:

xxx = MM−1x =⇒ N = MM−1

Example: Let an image have f = 152.015 mm and

M =





0.9964 0.0828 −0.0187
−0.0829 0.9966 0.0005

0.0187 0.0011 0.9998





It is wanted to create the image corresponding to the same projection distance and

M =





0.9923 −0.1207 −0.0287
0.1204 0.9927 −0.0104
0.0297 0.0069 0.9995





Find the coordinates in the new image of the point (102.864, 66.091).

The rotation matrix from the first image to the second is

N = MM−1 =





0.9793 −0.2026 −0.0103
0.2024 0.9793 −0.0071
0.0115 0.0049 0.9999




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The coordinates of the original point, a, in the principal system of the second image
are





xa

ya

za



 = N





102.864
66.091

−152.015



 =





88.905
86.613

−150.489





and the searched values

x = −152.015
88.905

−150.489
= 89.807

y = −152.015
86.613

−150.489
= 87.491

A particular case of these transformations is the one M = I. Another particular
case consists in modifying just the κ angle. This last one does not change the projection
plane π, so it is just a plane transformation:

x = cosκ x − sinκ y

y = sinκ x + cosκ y

The way the second image is actually computed is by the resampling technique.
This is explained in the paper “Orthophotographs”.

We come now to the linearization of the colinearity equations. When an adjustment
is carried out the solution is found as usual by iterating, starting form an approximate
solution. At each iteration the exact equations are replaced by linear ones.

Unless we are calibrating the values xc
p, y

c
p, the working coordinates will always be

the ones referred to the principal system, i.e., xa = xc
a − xc

p and ya = yc
a − yc

p, and this
we shall suppose.

Let the approximate values be f0, (XO, YO, ZO)0, M0, (XA, YA, ZA)0. To these
values there correspond two values (xa0, ya0). The values of (xa, ya) corresponding to
small increments of the approximate values are, within a first order approximation,

xa ≈ xa0 +

(

∂x

∂f

)

0

∆f + · · · +
(

∂x

∂ZA

)

0

∆ZA

ya ≈ ya0 +

(

∂y

∂f

)

0

∆f + · · · +
(

∂y

∂ZA

)

0

∆ZA

The subindex 0 means that the derivatives are evaluated at the approximate values.
Rotations matrices are composed by multiplying them. So a small rotation added

to M0 results in M∆M0. A small rotation matrix is in first order

M∆ =





1 −κ φ
κ 1 −ω

−φ ω 1





8



and it is required to find the derivatives of (xa, ya) with respect to ω, φ and κ.
We will find the derivatives applying the chain rule to equations (1), finding first

the derivatives of (xA, yA, zA):

xA = M∆M0XA0 = M∆xA0

xA = xA0 − κyA0 + φzA0

yA = κxA0 + yA0 − ωzA0

zA = −φxA0 + ωyA0 + zA0

Hence

∂xA/∂ω = 0 ∂xA/∂φ = zA ∂xA/∂κ = −yA

∂yA/∂ω = −zA ∂yA/∂φ = 0 ∂yA/∂κ = xA

∂zA/∂ω = yA ∂zA/∂φ = −xA ∂zA/∂κ = 0

There is no need to write ∆ω, ∆φ, ∆κ in place of ω, φ, κ, since the later are already
the small values representing the increment to M0. Also, the subindex 0 has been
removed, since it is used to indicate the evaluation point, not the derivative itself as a
function.

By application of the chain rule we find:

∂xa

∂ω
=

∂xa

∂xA

∂xA

∂ω
+

∂xa

∂zA

∂zA

∂ω
= 0 + f

xA

z2
A

yA = −xa

yA

zA

∂xa

∂φ
=

∂xa

∂xA

∂xA

∂φ
+

∂xa

∂zA

∂zA

∂φ
= −f

1

zA

zA + f
xA

z2
A

(−xA) = −f − f
x2

A

zA

= −f + xa

xA

zA

∂xa

∂κ
=

∂xa

∂xA

∂xA

∂κ
+

∂xa

∂zA

∂zA

∂κ
= −f

1

zA

(−yA) + 0 = f
yA

zA

= −ya

and like formulas for ya. The six derivatives are

∂xa/∂ω = −xa

yA

zA

∂xa/∂φ = −f + xa

xA

zA

∂xa/∂κ = −ya

∂ya/∂ω = f − ya

yA

zA

∂ya/∂φ = ya

xA

zA

∂ya/∂κ = xa

The derivatives with respect to the other parameters are easily found:

∂xa

∂f
= −xA

zA

=
xa

f

∂ya

∂f
= −yA

zA

=
ya

f

∂xa

∂xA

= −f
m11zA − m31xA

z2
A

= −m11f + m31xa

zA

,
∂xa

∂xO

= − ∂xa

∂xA

To avoid minus signs we write the derivatives with respect to the coordinates of O,
those with respect to the coordinates of A being the opposite ones:

∂xa

∂xO

=
m11f + m31xa

zA

∂xa

∂yO

=
m12f + m32xa

zA
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∂xa

∂zO

=
m13f + m33xa

zA

∂ya

∂xO

=
m21f + m31ya

zA

∂ya

∂yO

=
m22f + m32ya

zA

∂ya

∂zO

=
m23f + m33ya

zA

When the system of equations where these derivatives appear is solved, the in-
crements ∆f, etc. are added to the approximate values. For the rotation matrix, the
product M∆M0 is performed. If the ω, φ, κ increments are not very small (for instance,
in the first iteration), M∆ is better computed by an exact formula as a function of
ω, φ, κ. Any formula which is in first order as the M∆ shown above is valid. There are
several of them; see the paper “Matrices de Rotacion”. Numbers 5 and 6 in that paper
are the ones requiring the least number of operations.

If the values xc
p, y

c
p are being calibrated, then xc

a = xa+xc
p is used. All the derivatives

remain equal, still using the values xa, ya (i.e., not xc
a, y

c
a), and we further have

∂xc
a

∂xc
p

= 1
∂yc

a

∂yc
p

= 1

The units of the object coordinate system and of the image one, either xc, yc or
the principal system, are independent. All the formulas found so far where numbers
in both systems appear, and any others we may find, can be written in the form

a

b
=

X

Y

where a and b are magnitudes in the image system and X and Y magnitudes in the
object system. Note that the former include the focal length: f = −za for all a ∈ π.

For this reason, if at the projection plane there is not a film but a pixel matrix,
the focal length only has a meaning expressed in pixel units. A second photograph
taken with double projection distance and at the same time double pixel size would be
identical to a first one. Indeed, the very sentence “double pixel size” is absurd since the
units are the pixels; and also because the units are the pixels the second photograph
has the same focal length than the first one.

The scale of the image, which we found to be f/H, is expressed as

f

H
=

image units

object units

or by its inverse.
Transforming the pixels to millimeters or microns, as is usually done, is a remi-

niscent of working with those units with analogical cameras. It is doubly absurd if
we take into account that in order to decide whether a given image is adequate for
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a certain work, the millimeters are transformed back to pixels by means of the pixel
size, in order to find the relation meters per pixel, which is no other than the original
scale in pixel units.

The parameters defining the image coordinates of a point, apart form the object
coordinates themselves, are nine:

XO, YO, ZO, Ω, Φ, K, f, xc
p, y

c
p

They can be divided according to different criteria. In the process of exploiting the
image, once the parameters have been computed, the most important division is

XO, YO, ZO Ω, Φ, K, f, xc
p, y

c
p

because, as we saw, the first three have to remain fixed; they are “locked”, while the
others may be varied and the new image computed accordingly.

From the geometric viewpoint the division is

XO, YO, ZO, Ω, Φ, f κ, xc
p, y

c
p

Here κ does mean a κ rotation, while Ω and Φ are still symbolic names for two
parameters. The motivation for this division is that, from a geometric viewpoint, the
image is defined by the first six parameters —i.e., the last three parameters do not
actually exist. In order to define a conic projection the position of the projection center
is needed along with the orientation of the plane π, which is the parameters Ω, Φ, and
the projection distance f.

Finally, when computing the parameters the most relevant division is

XO, YO, ZO, Ω, Φ, K f, xc
p, y

c
p

for the last three do not vary from one image to another.
Apart from these divisions, the coordinates used will always be the ones in the

principal system, x, y; which can also be thought as the parameters xc
p, y

c
p being zero,

or even that they do not exist. The only exception to this is when they are being
calibrated.

Models

A model is a set of oriented photographs and object points. For example,

photo1 (XO, YO, ZO, M, f)1

photo2 (XO, YO, ZO, M, f)2

· · ·
photon (XO, YO, ZO, M, f)n

point1 (X, Y, Z)1

point2 (X, Y, Z)2

· · ·
pointm (X, Y, Z)m
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Its object system is arbitrary and is called model system. It very often coincides
with the principal system of one of its photographs.

Since the object and image systems are independent from each other, we may
change the units of one of them without having to do anything to the other. This is the
case, for instance, when pixels are transformed to microns, or microns to millimeters . . .
Within the object, we may transform from meters to kilometers, from kilometers to
miles . . . A change in units is applied by multiplying all the values by a constant.
Since the model system is arbitrary, it is also arbitrary on its units. Therefore, the
transformation from the model system to the actual object system is a translation and
a rotation plus a scale factor; i.e., a similarity transformation.

The multiplication of all the model coordinates by a constant can be interpreted
either as a change in the units, as we have done, or as actually making the model
bigger or smaller:

fig. 10

−−→

↓
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fig. 11

A

O1 O2

a1 a2

The direct problem within a model consists in knowing the image coordinates of
an object point in several photos from the model and therefrom computing its object
coordinates.

In the simplest case that the point only appears in two photographs (or it has
only been measured in two photographs, or it is only the information from those
photographs that is taken into account), we need only find the equations of the two
right lines passing through each projection center and its respective image point, and
compute the intersection of two lines in space, which is a well known problem.

One of those lines passes through O1 and a1 and the other through O2 and a2. We
first need to find the coordinates in the object system of a1 and a2:

Xa1
= XO1

+ M−1xa1
(resp. for a2)

Due to imperfections in the image and the measurements, the two right lines as
defined by the coordinates of these four points will not intersect in space, but pass
very near to each other. It is a typical algebraic problem to find the midpoint of the
shortest segment joining the two lines. However, in the by far most usual configuration
of the two photographs in photogrammetry, this solution is not better (neither worse)
than the midpoint of the shortest horizontal segment joining the two lines, that is, the
shortest segment with constant Z, and this later solution is more easily computed, as
we now show.

For the sake of simplicity and generality let a, b, c and d be the four points, a and b
belonging to one line and c and d to the other. For a given z coordinate, the (x, y)
coordinates in the first line can be found by interpolation:

x1 =
z − za

zb − za

(xb − xa) + xa, y1 =
z − za

zb − za

(yb − ya) + ya

and the respective formulas for (x2, y2). These formulas can in turn be written as

x1 = m1z + n1, y1 = p1z + q1,

x2 = m2z + n2, y2 = p2z + q2.

The square of the horizontal distance between the lines for a certain z is therefore

(

(m1z + n1) − (m2z + n2)
)2

+
(

(p1z + q1) − (p2z + q2)
)2

.
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When carrying out the operations this becomes an expression of the form

rz2 + 2sz + t.

The value of z for which this is minimum is

z =
s

r
.

With this value of z the points (x1, y1) and (x2, y2) are found and the solution is the
midpoint thereof.

Example:

O1 = (0, 0, 0) O2 = (411.48, 240.99, 1.02) f = 41.883

M1 =





0.86840 0.49583 0.00657
−0.49572 0.86838 −0.01351
−0.01240 0.00848 0.99989



 M2 =





0.86855 0.49552 0.00868
−0.49537 0.86855 −0.01548
−0.01521 0.00915 0.99984





a1 = (−0.189, 0.638) a2 = (−19.590, 0.502)

We first have to calculate the model coordinates of the points a1 and a2, or rather

the vectors
−−→
O1a1 and

−−→
O2a2, for it is the components of these vectors that appear in

the formula of the intersection (as zb − za, xb − xa, etc.).

X−−−→
O1a1

= M−1
1 x1a1

=





0.86840 −0.49572 −0.01240
0.49583 0.86838 0.00848
0.00657 −0.01351 0.99989









−0.189
0.638

−41.883



 =





0.039
0.105

−41.888





X−−−→
O2a2

= M−1
2 x2a2

=





0.86855 −0.49537 −0.01521
0.49552 0.86855 0.00915
0.00868 −0.01548 0.99984









−19.590
0.502

−41.883



 =





−16.627
−9.654
−42.054





Now we have got the four points, O1 and a1, and O2 and a2, with coordinates in the
model system, and it is required to find the best intersection as it has been explained.
Let the four points be renamed a, b, c, d:

x1 =
z − za

zb − za

(xb − xa) + xa =
z

−41.888
0.039 + 0 = −0.0009z

y1 =
z − za

zb − za

(yb − ya) + ya =
z

−41.888
0.105 + 0 = −0.0025z

x2 =
z − zc

zd − zc

(xd − xc) + xc =
z − 1.02

−42.054
(−16.627) + 411.48 = 0.3954z + 411.08

y2 =
z − zc

zd − zc

(yd − yc) + yc =
z − 1.02

−42.054
(−9.654) + 240.99 = 0.2296z + 240.76

Whence

x2 − x1 = 0.3963z + 411.08 y2 − y1 = 0.2321z + 240.76
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and

(x2 − x1)
2 + (y2 − y1)

2 = (0.1571 + 0.0539)z2 + 2(162.91 + 55.87)z + 4112 + 2412

= 0.2110z2 + 2 ·218.78z + const.

The minimum for this quantity is achieved at

z =
−218.78

0.2110
= −1037.33

From this value of z, substituting in the equations for x1, y1, x2 and z2, we find

(x1, y1) = (0.97, 2.59) (x2, y2) = (0.95, 2.62)

The mean value is the searched solution:

(X, Y, Z)A = (0.96, 2.61,−1037.33)

Two models can be joined into a single one; one photo may be added to an existing
model, and finally a set of independent photos can be joined to form a new model.

Of these possibilities the more basic one is that of joining two photographs to
form a model. Since the coordinate system of a model is arbitrary, it is usually
made coincident in position and orientation with the principal system of one of the
photographs, the first photograph, and the other is the second photograph. Therefore

(XO, YO, ZO, M)1 = (0, 0, 0, I),

where I is the identity matrix.
There remains to select the model scale. This is best defined by fixing the distance

between the two projection centers, but for practical computational reasons it is the
coordinate X2 which is chosen.

The relative position of the second photograph with respect to the first one is given
by its parameters in the model system so chosen —i.e., (X2, Y2, Z2, M). Among these,
X2 has been freely chosen, so there only remain five to calculate:

Y2, Z2, Ω, Φ, K

These are found by relating the position of image points in one and the other
photograph. A minimum of five points measured in both photographs is needed, but
in order to get a reliable orientation at least six are needed. These six points are taken
at the so called Von Gruber locations:

fig. 12
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This is a particular case of a very important principle in photogrammetry: Do
never extrapolate (out of the area covered by the points).

The position of image points can be related to the orientation of one photograph to

the other (relative orientation) by the fact that the vectors
−−−→
O1O2,

−−→
O1a1 and

−−→
O2a2, as

contained in the triangle AO1O2, are coplanar. Coplanarity is expressed algebraically
by the property of being linearly dependent, which in turns means that the determinant
formed by the vectors vanishes:

∣

∣

∣

∣

∣

∣

∣

−−−→
O1O2−−→
O1a1
−−→
O2a2

∣

∣

∣

∣

∣

∣

∣

= 0

The three vectors need be expressed in the same coordinate system, of course, and

the model system is chosen for that. We have already seen that
−−→
O1a1 in the model

system is M−1
1 x1a1

and resp. for
−−→
O2a2.

Taking the same example as for the intersection of right lines, the condition is
∣

∣

∣

∣

∣

∣

411.48 240.99 1.02
0.039 0.105 −41.888

−16.627 −9.654 −42.054

∣

∣

∣

∣

∣

∣

= 0

The actual value of this determinant is 26, due to imperfections in the measurements
and others.

When computing the orientation, the values of X2, Y2, Z2, Ω, Φ, K, on which the

vectors
−−−→
O1O2 and

−−→
O2a2 depend, are the unknowns. With five measured points we

have a system of five equations (not linear) with five unknowns, that may be solved;
but as I said, we had better have at least six points.

Another usual selection criterion for the fixed parameters and the unknowns is
to take both O1 and O2 fixed, as well as Ω1, and let the unknowns be Φ1, K1 and
Ω2, Φ2, K2.

Either when more than two photographs are joined, or when any of the other
possibilities is performed, model-photo or model-model, we will have to adjust more
than two photos at once, and the coplanarity condition is no longer applicable, at least
not as easily as in the two-photo case.

However, the colinearity equations apply equally to two photographs than to more
of them. The equations are established, one for x and one for y for each image point, the
unknowns being the six orientation parameters of that photograph, (X, Y, Z, Ω, Φ, K),
and the (X, Y, Z) coordinates of the object point. There are more equations than in
the coplanarity method, but there are as well more unknowns.

Seven parameters have to be fixed as when applying coplanarity. This follows from
the fact that it is a geometric need, not something depending upon the method of
calculation.
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As it was shown some pages back, given an image and its orientation parameters, a
different image can be analytically (or mechanically) generated with other parameters
chosen at will, with the only restriction that the projection center remain the same.
This has a very profitable application within two-photo models: two new images can be
generated with the orientation parameters so chosen that they satisfy the requirements
of the normal case, namely, M1 = M2 and the x axes of both photographs coincident
ad parallel to the base O1O2.

fig. 13

O1

O2

There is an infinity of solutions, differing in a rotation around the axis that joins
the two projection centers. The solution which modifies the least the orientation of the
first photograph is as follows: Let mmm1 be a unitary vector in the direction and sense of−−−→
O1O2, and let s be the third row of M1, considered as vector. Then

M =





mmm1

mmm2

mmm3



, mmm2 =
s ∧mmm1

|s ∧mmm1|
, mmm3 = mmm1 ∧mmm2

is the rotation matrix of the two new images. Hence, those that pass from M1 and M2

to M are MM−1
1 and MM−1

2 respectively. The new images are called epipolar.
All the possible solutions have in common the row mmm1. Then we can peek any

vector in place of s, and compute mmm2 and mmm3 with the same formulas. In case that
the photographs ought to be parallel to the XY plane, as in aerial photogrammetry,
the best solution is that which generates the most vertical photos, which is also the
easiest one to compute: in place of s the vector (0, 0, 1) is taken.

Outer Orientation

The outer orientation of a photograph is composed of the coordinates of the pro-
jection center O and the rotation matrix M. Therefore, a set of photographs with their
outer orientation together with a set of object points is a model where the coordinate
system is the object system.

The outer orientation of a block is solved by establishing the system of colinearity
equations, two for every measured image points. Everything in these equations is
unknown save the focal length and the coordinates of the control points, that serve to
solve the system.

Example: Let a photograph have a focal length of 152.912 mm, and within it
a point a has been observed with coordinates (−15.713,−9.423). The approximate
object coordinates of this point are

4939.978, 4251.036, 82.137
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and the approximate values of the outer orientation parameters of the photograph are

O ≈ (5100, 4350, 1580)

M ≈





0.98569 0.16859 0.00000
−0.16859 0.98569 0.00000

0.00000 0.00000 1.00000





It is required to establish the residual equations for the x and y photo coordinates of
this point.

According to the colinearity equations, the photo coordinates corresponding to the
given approximate values and the known focal length are (−17.806,−7.204); and the
partial derivatives of these coordinates with respect to each of the parameters involved
(with exception of the focal length, which we are taking fixed) are

∂x

∂XO

= −0.10,
∂x

∂XA

= 0.10, . . .
∂x

∂ω
= 0.8, . . .

∂y

∂XO

= 0.02,
∂y

∂XA

= −0.02, . . .
∂y

∂ω
= 153, . . .

The complete residual equations are

vx = −0.10∆XO − 0.02∆YO + 0.01∆ZO + 0.8ω − 155φ + 7.2κ

+ 0.10∆XA + 0.02∆YA − 0.01∆ZA − 2.092

vy = 0.02∆XO − 0.10∆YO + 0.0∆ZO + 153ω − 0.8φ − 18κ

− 0.02∆XA + 0.10∆YA + 0.0∆ZA − 2.219

If the focal length where also being calibrated the above given value would just
be an approximate value like the others, and a term corresponding to ∆f would be
present in both equations.

The coordinates of the control points may also be adjusted. In that case the
difference between the adjusted value and the observed one is to be taken as a residual:

vX = Xaj − Xob

Suppose the values ω, φ, κ are found to be

ω = 0.0044, φ = −0.0126, κ = −0.035 (rad)

Find the new matrix M.
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According to parametrization 6 of “Matrices de rotación” we successively find the
values:

ω2 = 19 ·10−6, φ2 = 159 ·10−6, κ2 = 0.00123, p = 0.999649;

1
2
ωφ = −28 ·10−6, 1

2
φκ = 221 ·10−6, 1

2
κω = −77 ·10−6,

M∆ =





0.99931 0.03496 −0.01267
−0.03502 0.99938 −0.00418

0.01252 0.00462 0.99999





and finally

M∆M → M =





0.97911 0.20293 −0.01267
−0.20300 0.97917 −0.00418

0.01156 0.00666 0.99999





If parametrization 5 is used instead, the greatest difference with respect to the
current solution is just 6 ·10−6 at places m12 and m21.

There can also exist direct measurements of the coordinates and rotation matrices
of points: GPS and INS observations. These observations are like control points, in the
sense that they constitute direct measurements of parameters from the adjustment.
However, they may bear constant errors, so that the equation of the observed GPS
coordinates would be

XGPS = XO + Xshift

Furthermore, this constant error changes from one strip to another, so a different
vector for each strip has to be computed.

The equation of the observed INS matrix is

MINS = MshiftM

There can be higher order error terms (i.e., linear), but they usually reflect the fact
that the GPS or INS coordinates have not been properly computed.

Photograph with distortion

Two expositions of this subject can be found in the documents “Elementos de
calibración de una proyección central” and “A general purpose geometric distortion
model for central projection cameras”. The first one is a partial, easier to read expo-
sition. It tacitly assumes that the distortion at the principal point is zero. This point
is explained in detail in the second one, which is a precise comprehensive exposition
of the geometric-mathematical aspects together with the proposal of a general set of
parameters.
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The starting point of the study of the photograph with distortion is as follows:

fig. 14

Camera
(Black box)

(X,Y,Z)1
(X,Y,Z)2

...
(X,Y,Z)n

(x′, y′)1
(x′, y′)2

...

(x′, y′)n
I = D ◦ T

There is an object, which from the orientation viewpoint is a set of object coordi-
nates: (X, Y, Z)1, ...(X, Y, Z)n; there is a camera containing a support (a piece of film
or a pixel matrix) where the rays that enter the camera are condensed and impressed
thereon somehow; finally, there is the image taken by the camera, which from the ori-
entation viewpoint is the set of image coordinates corresponding to the known object
coordinates: (x′, y′)1, ..., (x′, y′)n. Of these three elements, the intermediate one, the
camera, we know nothing of it. We don’t know where it was positioned at the time of
taking the image, nor its focal length and other internals.

Hence, what we have is a set of (X, Y, Z) object points together with their corre-
sponding (x′, y′) images. By relating both sets we can guess where the camera was,
(X, Y, Z)O, as well as the other six orientation parameters. But a camera is not a per-
fect machine, and therefore the (x′, y′) coordinates do not match any central projection
whatsoever (this is why the prime index is used for them). Instead, the passage from
the object coordinates to the image ones is the composition of two steps:

Obj.
(X, Y, Z)

T−−−→ (x, y)
D−−−→ Im.

(x′, y′)

A central projection plus a distortion. Of course, there isn’t such a two step process
inside the camera when the image is formed, but the meaning of this interpretation is
that the transformations that carries each (X, Y, Z) point to its corresponding (x′, y′)
can be expressed as the composition of a perfect central projection, T, plus a distor-
tion, D .

But there happens that this decomposition is not unique —.i.e., if I = D1 ◦T1 then
also

I = D1 ◦ T1 = D2 ◦ T2 = I = D3 ◦ T3 = · · ·
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Terr. Im.

T1 D 1T2 D 2

T3 D 3

T4 D 4

T5 D 5

Some sections before it was shown that an image can be analytically changed into
another one with different orientation parameters, provided the projection center is
kept fixed. This degree of freedom is what causes an imperfect image to be decompos-
able in projection plus distortion in different ways. A detailed explanation is given in
the second of the above mentioned works.

In case a camera is calibrated at laboratory by means of collimators, the object is
not exactly a set of coordinates but a set of light rays concurrent at the projection
center of the camera, forming known angles among themselves. Let there be for
instance two arrays of collimators arranged in two perpendicular rows, intersecting
at the central collimator, and, within each of the four lines starting at the central
collimator, let the others be placed at angles of 7◦30′, 15◦, 22◦30′, 30◦, 37◦30′ and 45◦

with respect to the projection center. A total of 25 collimators.
It makes no sense to state that the central collimator is directed along the principal

axis of the camera, and hence that its image is the principal point, for it would imply
that the principal point is known, and it precisely that (among other parameters)
which is being calibrated.

The paper “Elementos de calibración...” explains how to compute from this data
the principal point (the point from where the distortion is most symmetric) and the
focal length that best fits the image (the one that makes the distortions smaller). Here
is an example.

Example: The distances of the collimator images to the central one along each of
the four semi-diagonals are:

7◦30′ 15◦ 22◦30′ 30◦ 37◦30′ 45◦

s.d. 1 20.081 40.879 63.203 88.101 117.070 152.486

s.d. 2 20.082 40.876 63.202 88.096 117.069 152.483

s.d. 3 20.082 40.874 63.200 88.096 117.066 152.480

s.d. 4 20.079 40.875 63.199 88.095 117.063 152.479

average 20.081 40.876 63.201 88.097 117.067 152.482

The pairs of opposite semi-diagonals are 1/3 and 2/4.
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We note that the computations of the principal point and of the focal length are
independent of each other, for the later uses the average values along the four semi-
diagonals and the former the difference between a semi-diagonal and its opposite one,
and each of these quantities is not altered by a variation of the other parameter.

We shall begin with the principal point. The cited paper displays a formula to
obtain the principal point, and within it the difference between distortions at equal
angles. But this is the same as the difference of the real distances, so there is no need
to compute approximate values and the corresponding distortions.

The differences s.d. 1 minus s.d. 3 and s.d. 2 minus s.d. 4 are

7◦30′ 15◦ 22◦30′ 30◦ 37◦30′ 45◦

1 − 3 −0.001 0.005 0.003 0.005 0.004 0.006

2 − 4 0.003 0.001 0.003 0.001 0.006 0.004

Let the difference corresponding to the angle α be called dα. The formula for ǫ
according to “Elementos de calibración...” is

ε = −
∑

tan2α dα

2
∑

tan4α

When applied to 1/3 this gives

ε1 = −0.02 ·(−0.001) + · · ·+ 1 ·0.006

2 ·3.0 = −0.004

And for the other diagonal,
ε2 = −0.003

If the s.d. 1 follows the diagonal of the first quadrant, the s.d. 2 that of the second
one and so forth, then

εx =
ε1 − ε2√

2
= −0.001

εy =
ε1 + ε2√

2
= −0.005

Suppose that the image of the central collimator has image coordinates (xc, yc) =
(130.020, 110.988); the calibrated principal point is therefore

xc
p = 130.019, yc

p = 110.983
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We proceed now to the computation of the focal length. It should be noted first that
the angles that the collimators form with respect to the principal ray of the projection
are not 7◦30′, etc., for the central collimator does not follow the direction of that ray.
However, the difference with respect to these angles is very small and of opposite value
for opposite semi-diagonals, i.e., if a collimator forms an angle of, say, 15◦0′10′′ with
the central ray, the opposite collimator will be at an angle of 14◦59′50′′ from that same
ray. The distance between the two images will very nearly be the distance between
two opposite collimators at 15◦. Hence, we can take half that distance as being the
distance to the center corresponding to a collimator at 15◦; but half that distance is
equal to the average of the distances of both collimators to any intermediate point,
such as the central collimator. Therefore, the mean distance to the central collimator
of the four collimators forming a certain angle with it can be taken too as the mean
distance to the principal point of the rays forming that same angle with the principal
ray, and the calculus of the focal length is independent of the determination of the
principal point, as claimed before.

The formula we will use now is not that of “Elementos de calibración...”, but one
which is simpler and does not require the previous computation of an approximate
focal length and the corresponding distortions. This formula is

f =

∑

r′2
∑

r′ tanα

where by r′ we mean the real distances (obviously, since the theoretical ones are not
yet known).

The result for the current data is

f =
50784.0

333.95
= 152.531

It is a remarkable fact that the principal point and the focal length can be computed
without the need to have an approximate value for the later nor to even compute the
distortions. But certainly the distortions are of interest. The small displacement of the
central collimator with respect to the principal point of 0.004 and 0.003 along one and
the other diagonals correspond to angles of 24 ·10−6 and 19 ·10−6 radians according to
the computed focal length. These values equal 5′′ and 4′′ respectively. Therefore, the
angles that the collimators form with the central ray of the projection are

s.d. 1 7◦30′05′′ 15◦00′05′′ 22◦30′05′′ 30◦00′05′′ 37◦30′05′′ 45◦00′05′′

s.d. 2 7◦30′04′′ 15◦00′04′′ 22◦30′04′′ 30◦00′04′′ 37◦30′04′′ 45◦59′04′′

s.d. 3 7◦29′55′′ 14◦59′55′′ 22◦29′55′′ 29◦59′55′′ 37◦29′55′′ 44◦59′55′′

s.d. 4 7◦29′56′′ 14◦59′56′′ 22◦29′56′′ 29◦59′56′′ 37◦29′56′′ 44◦00′56′′
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and the distances of their images to the principal point:

s.d. 1 20.085 40.883 63.207 88.105 117.074 152.490

s.d. 2 20.085 40.879 63.205 88.099 117.072 152.486

s.d. 3 20.078 40.870 63.196 88.092 117.062 152.476

s.d. 4 20.076 40.872 63.196 88.092 117.060 152.476

The theoretical distances for each α are f tanα = 152.531 tanα:

s.d. 1 20.085 40.874 63.185 88.069 117.047 152.538

s.d. 2 20.084 40.874 63.184 88.068 117.046 152.537

s.d. 3 20.077 40.867 63.176 88.059 117.035 152.524

s.d. 4 20.078 40.868 63.177 88.060 117.037 152.525

and finally the distortions and mean distortions for the different distances:

20.1 40.9 63.2 88.1 117.0 152.5

s.d. 1 0.000 0.008 0.022 0.036 0.027 −0.049

s.d. 2 0.001 0.005 0.021 0.031 0.026 −0.051

s.d. 3 0.001 0.004 0.020 0.033 0.027 −0.047

s.d. 4 −0.002 0.005 0.019 0.032 0.024 −0.049

average 0.000 0.005 0.021 0.033 0.026 −0.049

There can be applied weight functions to the different distances. The reason is that
some collimators represent a larger area of the photograph, and hence of the object,
than others. The ones representing a smaller area are those nearest and furthest to the
center. A weight function is provided in “A general purpose...”. A simple and correct
solution is to weigh the innermost ones with 0.5 and the outermost with 0.7. The
greater weight of the later with respect to the former is because the second outermost
collimators have their images at a considerable distance from the outermost ones’, and
therefore these represent a greater area than the innermost.

With these weights, the value for the principal point does not suffer a significant
change but the focal length is now 152.539, and the average distortions

20.1 40.9 63.2 88.1 117.0 152.5

s.d. 1 −0.001 0.003 0.017 0.029 0.020 −0.057
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Photographing the stars

There is in theory no more exact method of calibrating a camera than taking
a picture to the starry sky, for there is not any set of points anywhere of which a
photograph can be taken with a position better known than the celestial objects.

However, it is not exempt from problems. The first one is obvious, the photograph
has to be taken at night, with a clear sky and from a point with enough visibility. But
there are more. In order that the stars appear on the photograph, a long exposure
time is necessary. But it cannot be too long, for then the movement of the start would
be significant: one second of time equals 360/24 = 15 arc seconds, so four seconds
is already 1′. The problem is not so much the movement of the image during the
exposure, since it is a regular displacement and the midpoint of the images will always
correspond to the mean time of the exposition; as it is the fact that if the image keeps
moving form pixel to pixel then no pixel will receive enough light to be activated.

There is also the problem that if we want a fine calibration, and hence need hun-
dreds of stars to appear, a longer or more sensible exposure is required.

Of all the difficulties mentioned so far, the only one that actually matters is that
of being able at all to get a picture with stars enough for the calibration, due to the
problem of the faint light of them. The others are ridiculous compared to the effort of
building and measuring a high precision calibration set of points, and the advantages
with respect to the traditional method are enormous: no need to maintain (i.e., keep
intact and occupying space, and measure from time to time) the calibration grid;
no need to be at the laboratory; more precision than we will ever need; automatic
calibration. For outdoors terrestial applications the benefits are apparent —take a
picture the night before the starting of the job and another one at the end.

With respect to automatic calibration, this is so because the position of stars is
a well known ever fixed data, that shall be stored by the calibrating program itself.
Furthermore, the software can compare the picture with its known sky and automat-
ically identify the stars, whence performing the calibration. Only an approximated
date is needed for the dozen or so stars with relevant per year movement and for the
correction to apply because of Earth velocity in its movement around the Sun and
the subsequent apparent displacement of the celestial objects, all these done by the
software.

So here are the formulae. There is no need to derive equations anew, for in the equa-
tions of colinearity, numerator and denominator can be divided by any and the same
constant. They may in particular be divided by

√

(X − X0)2 + (Y − Y0)2 + (Z − Z0)2,
in which case the equations become

x = −f
m11α + m12β + m13γ

m31α + m32β + m33γ

y = −f
m11α + m12β + m13γ

m31α + m32β + m33γ

(3)
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α, β, γ being the cosinus of the light ray with the X, Y and Z axes respectively.
These equations capture the essence of the projection process and geometry better

than the usual version does, for they reflect the fact that the image does not exactly
depend on the position of the object point, but rather of the direction where it lies
with respect to the projection center, given by the α, β, γ quantities, which are not
three independent parameters but just two. And they reflect what was said before
that different images can be computed out of a given one with different projection
parameters as long as the projection center is fixed, because if this point is respected
the projective rays, i.e., α, β, γ, do not change.
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